Lecture Notes
PARALLEL COORDINA TES

Alfred Inselb erg( ¢ 1999, 2004)

Senior Fellow San Diego SuperComputing Center, USA
&
School of Mathematical Sciences
Tel Aviv Univ ersity, Israel
aiisreal@p ost.tau.ac.il

COPYRIGHTED MA TERIAL

COPYING/REPR ODUCTION BY WRITTEN PERMISSION ONLY






Chapter 1

In tro duction

VISUALIZATION

Insight through I'mages

Collection of application dependent M appings :
Problem Domain — VisualRange

Involves: GEOMETRY, COGNITION, ART, 7

Goal: Visual Model to help our Intuition
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X Pump s Deaths from chalera

Figure 1.1: Choleraepidemicin London 1854. Dr. Snav placeddots at the addresse®f the
deceasedind saw the concenration of deathsaround the Broad street water pump. From
E.W.Gilbert, Geog. J. 124] (1958){ By permissionfrom E.R.Tufte \ The Visual Display of
Quartitativ e Information”, Graphic Press1983p. 24



@ @ m\ A stranger

Figure 1.2: Multiv ariate data mappedto faces;ead parametercorrespndsand is measured
on a facial feature. H. Cherno, JASA 68 (1973)



Figure 1.3: Parallel Coordinates{ examplefor 5D.



Figure 1.4: (Left)Region of Sloveniawhere7 typesof ground emissionsvere measuredoy the
LandSat Thematic Mapper and shavn in subsequen gures { Thanks to Dr. Ana Tretjak
and Dr. Niko Sclamberger, Statistics O ce of Slovenia. (Right) The display is the map's
rectangular region, the dot marks the position where the 7-tuple shavn in the next gure

was measured.

Figure 1.5: Query showving a singledata item: the X ;Y (position alsoshonn on the right of
Fig. 1.4) and valuesof the 7-tuple (B1;B2;B3;B4;B5;B6;B7) at that point.



Figure 1.6: Finding water regions. The cortrast due to density di erences around the lower
valuesof B4 is the visual cue prompting this query.

Figure 1.7: (Left)The lake and { result of query showvn in Fig. 1.6 and (Right) just its
boundary { result of query shavn in Fig. ??.



Figure 1.8: A datasetwith 32 parametersand two categoriesis showvn in the badkground.
On the left plot are the rst two parametersin the original order. The automatic classi er
found the 9 parametersneededo state the rule with 4 % error and orderedaccordingto their
predictive value. The besttwo parametersare plotted on the right shaving the separation
achieved.
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Chapter 2

The Plane R? with k-coords

= X
\R“

X Xp

Figure 2.1: Points, above (3; 1), on the plane are represeted by lines.
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With d the distancebetweenthe axesthe correspndenceis :

d b

line " :Xo=mxy+Db ! point ‘:(m,m

) mé6 1: (2.1)
Lines with negative slope m < 0 (negative correlation) are mapped into points betweenthe
axes,m > 1 to the left of the X, and 0 < m < 1 to the right of the X, axes. To include
lines with m = 1 the Euclidean plane R? is enbeddedin the Projective plane P?>. Then a
line with slope m = 1 is mapped in the direction also calledideal point with slope b=d

y X2
A

X1 X2

Figure 2.2: Conversely lines are represeted by points inducing a point ! line duality.
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Top View

VAN

Figure 2.3: Model of the Projective Plane. Euclidean points are mapped into surfacepoints
of the hemisphereand ideal points/dir ections are mapped into the diameters of the \cap"
with the samedirection.

Homogeneougoordinates are very conveniert and the corversionto/from Cartesianis
easyi.e. Cartesian (a;b)! (a;b;1)! k(a;b;l) forké O:
Sometimesit is preferableto descrike the line ™ by :
T X+ aXs+az=0 (22)
andfora, 6 0, m = g—; and b= g—g providing the correspndence:

Tilagyagiag] T i (dag; agian + ap): (2.3)

In turn this speci es a linear transformation betweenthe triples * and °



where™ and ~ are consideredas column vectors. The 3 3 matrix is:

2 3 2 3
0d O 1=d 0 1

A=400 15;A'=4 1=d 0 05: (2.4)
11 0 0 10

which can be easily computed by taking 3 simple triples, like for example, [1,0,0], [0,1,0]
and [0,0,1] for *. For the other half of the duality, we look into the point P ! P line
correspndencewhich is given by:

P(puip2;ips) ! Pil(pr p2)idps; dpul: (2.5)
Again taking P and P ascolumn vectorswe have:

P=B 'P ;P=BP

Te ideal peint P®
X

'41521 SZZ 44 lz 42 41

Figure 2.4: Under the duality parallel linesmap into points on the samevertical line. On the
projective plane model, the great semi-circlesrepreseting the lines sharethe samediameter
sincethe lines have the sameideal point (direction). An ideal point in the direction with
slope m is mapped into the vertical line P} .
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with

2 3 2 3
11 0 0o 0 1=d
B1=4 00 dd5;B=41 0 1=d5S : (2.6)
do 0 0 1=d 0
Xo
AY /
{ 2
{1
l O o & X éo X
From 0ol [e 44 To 0
Ideal 3 " deal
Point Point
{1 &

X1 X2

Figure 2.5: Duality : Rotation of a line about a point $ Translation of a point on a line.
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D:(0,1) C:(1,1)
(a)
X X
0 A:0,0) B:(1,0)
YA E:1,0,0) X2
indicated by wm = =
1 (b) | [E:1,0,0
\
X1
X1 X2 X3

Ya
A F.0,0,0,1,0
indicated by = = = X3

Figure 2.6: (a)Square,(b) 3-D cube (c) 5-D hypercube all with unit side. All vertices,edges,
facesof all order can be seen{ after learning the cortents of sectionsLines & Planes.

16



Chapter 3

Multidimensional Lines

Adjacen t Variables Form

What is\a line in RN" ?

In R? a line is the intersection of two planes. Soa line * in RN is the intersectionof N 1
non-parallel hyperplanes. Equivalertly, it is the set of points (speci ed by N-tuples) which
satisfy a setof N 1 linearly independert linear equations.

8
1.2 DXy = ompXp + by
2:3 DXz = mgXp + b
3.1
% i L Xi = mX 1+ R 3.1)
TN LN COXN T O MyXy 1t by

Ead equation cortains a pair of adjacently labeled variables. In the x; 1x;-plane the rela-
tion labeled"; 1 is a line, and by our point $ line duality which we have already found
(eq. (3) in Chapter 1) it canbe represeted by a point ; 1.

(st (D i)
or in homogeneougoordinates:
= 20 m)+1;bh;1 my): (3.2)
ThereareN 1 sud points fori = 2;::: ;N which represen the line .
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Base Variable Form

Another commonway of describinga line* RN is in terms of one, sometimescalled the
base variable which after appropriate relabeling may be taken asx;. Then
8 .
1:2 . X = m%Xl + b}
‘13 5 Xz = mixg + b
. ; 3.3
% oD X = mixg + B 39
N o Xn = omixg + B

andthe N 1 points represeting it are:

o= (@ L1 omb; (3.4)

Intersection and non-in tersections of lines

It is corveniert to illustrate the situation in 4-D usingthe base-ariable represetation of a
line:
Xi=ViT+pei = 1,2,3: (3.5)

and shovn in Fig. 3.7. There the intersection of two lines described by eq. (3.5), eath
represeted by 3 indexed points "ti, is constructed. For T denoting time and x; X, X3 the
spacecoordinates of a particle moving with constart velocity V. = (v; v, v3) and initial
position P, = (Po:1 ; Po:2 5 Po:3) €0 (3.5), and equivalertly it's 3 point represetation, provide
the complete trajectory information of the particle. The two setsof triple points "1; and
O descrike the trajectories of two moving particles. The construction in Fig. 3.7 shavs
that two sud particles collide sincethey go through the samepoint in spaceat the same
time (i.e. thereis atime-spaceintersection). Perhapssomeof the power of the k-coordinate
represemation can be appreciatedfrom this simple example.

Y

A

¢1+¢1+ eoo +1+ o o o «1»

X]_ X2 X3 Xi 1 Xi XN 1XN

Figure 3.1: Spacingbetweenadjacern axesis 1 unit.
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T121 X2 = MX1+ by

A = (a;ap ag a4 a5) 2
; a2 R
/

—611‘ 12 45

/ X

X 23
a
“34
ag

X1 X2 X3 X4 X5

Figure 3.2: Point on line in 5-D.

\J
X

X1 X2 X3 X4 Xs5 Xeg X7 Xg Xg X
Figure 3.3: Line interval in 10-D{ the thicker polygonallinesrepresen it's end-points. The
adjacen variablesrepresetation, consistingof nine properly indexed points, is obtained by
the sequetial intersectionsof the polygonal lines' linear portions. Note that ";., is to the

right of the X,-axis and “4.7 is an ideal point. The remaining points are in between the
correspnding pairs of axes.
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4.5

X1 X X3 Xa X5
Figure 3.4: Algorithm for constructing a pairwise linear relation, in this case ,s5, given the
N 1 points, i 15, represeting the line.
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.(k 1, pk;]_)
X
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Xk
Figure 3.5: The Collinearity for the 3 points “i; ; "jx; ik. Thetwo trianglesarein perspective

with respect to the ideal point in vertical direction. The y-axis is o scale.
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Figure 3.6: Two intersectinglinesin 5-D.
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A
L
T Xl X2 X3

Figure 3.7: Intersection, for the base-ariable line description, of two lines in 4-D. This
provides the spaceand time coordinates of the place where two particles moving with
constart velocity collide.

Y ~0
\ T1
LB
Tx]
AR

T3 .

T X1 X2 X3

Figure 3.8: Non-intersection betweentwo linesin 4-D. Herethe minimum distanceis 20 and
occursat time = .9. Note the maximum gap on the T-axis formed by the lines joining the
“'s with the samesubscript. The polygonallinesrepreseting the points wherethe minimum
distanceoccursare shovn and they have the samevalue of T.

[9] A. Inselberg. The plane with parallel coordinates. Visual Computer, 1:69{97,1985.
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T xl X2 X3

Figure 3.9: Non-intersectionbetweentwo linesin 4-D. Herethe minimum distanceis 20 and
occursat time = .9. Note the maximum gap on the T-axis formed by the lines joining the
“'s with the samesubscript. The polygonallinesrepreseting the points wherethe minimum
distanceoccursare sh%Nn and they have the samevalue of T.

T2
0
M T1

T X1 X> X3

Figure 3.10: Non-intersection betweentwo lines in 4-D. Here the minimum distanceis 10
and occursat time = 1.6. Note the the diminishing maximum gap on the T-axis formed by
the lines joining the "'s with the samesubscript and comparewith Fig. 3.9. The polygonal
lines represeting the points wherethe minimum distance occursare shown.
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T X1 X5 X3

Figure 3.11: Near intersection betweentwo lines in 4-D. Here the minimum distanceis 1.5
and occursat time = 1.8. Note the the diminished maximum gap on the T-axis formed by
the linesjoining the "'s with the samesubscript. The polygonallinesrepreseting the points
wherethe minimum distance occursare shown.

[10] A. Inselberg and B. Dimsdale. Multidimensional lines ii: Proximity and applications.
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A
X3
., Xi
X1 _ i
\ """"" XN
ISy = X
N " U
£ X i1
%9 3 Xn
., £ .50
5K
X]_ X2 Xl Xi+1 XN

Figure 3.12: L, distance between the points P (X1, %500 Xy) and PO =

(x9; 2 x% i x).
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Figure 3.13: Conicts, indicated by overlaping circles, within the next 5 minutes.

Figure 3.14: Con ict resolutionwith parallel-o set maneuers. Three pairs of tangert circles.
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Chapter 4

Planes, p-ats & Hyp erplanes

Vertical Line Representation

Y y 2\2%3

x \
A
/ R
X !E 7\ X2
X1Y1 X2Ye X3 ” 1

Figure 4.1: A plane in R3 can be represeted by two vertical lines and a polygonal line
represeting oneof its points.

12 0 Xo= MmXpt+ by
23 I X3= M3Xp+ by !
eat value of k determinesa(the rotated) plane and, in turn, the translated position 1:
mi 2ms k* CAShL L B P
mZ mz+k3(m, 1) ' mi mz+ k¥(m, 1) '

(4.1)

12_(
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The above generalizeto RN wherea hyperplanebeing represeted by N 1 vertical lines.

Representation by Indexed Points

The family of \Sup er-Planes" E

We considerthe setof points P 2 RN whoserepresemation in k-coordscollapsego a straight
line. They form a 2-D subspace(2- at) That is, P : y = mx + b and for ead choice of
(m; b) the correspnding point is :

Therefore, the super-planes (abbr.sp) are on the line u conaining the points
(0;0;:::;0); (1; 1; :::; 1). They canbe described in terms of the axesspacingand for R® the sp
are given by:

Si(dg dp)xi+ (dp dg)xp+ (dp di)xz=0 (4.4)

For the standard axesspacingusedsofar, d; = 0;d, = 2;d; = 2 the correspnding, called
the rst, spis:
S

1-X1 2Xo+ X3=0 (45)

For a plane
P COX1t CXot+ C3X3 = Gy, (46)

Figure 4.2: A set of coplanar points on a regular grid in R® with the two vertical lines
pattern.
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X1

Figure 4.3: A line " on a plane is represeted by onepoint i, in terms of the coordinates
(i.e. linein 2-D! ) point in Y; and Y, which is collinear with the two point "1, and ",3. This
is a consequencef Desarguegrojective geometrytheorem.

Yl

Figure 4.4: Rotation of a plane about a line $ Translation of a point alonga line.
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. . C, C3 + _ G

S < 12 * X2 = Cc+2C3 1 C+2C3

=\ 3 , ; 4.7)
. AN . — C1+ Co Co -
by X3 = o ClX + & o

Thesetwo points represeting =~ coincidessinceit is a line in a sp, and in homogeneous
coordinates

~

1237 , = = (Co+ 2C3 Cp; 1+ Cr+ C3) (4.8)

This is the rst indexed point for . To understandits signi cance follow the next two
gures. Next the axis X is translated to the position X oneunit to the right of the X3
providing the new axesspacingd; = 4;d, = 1;d; = 2. The correspnding spis

io X1+ X2 2X3=0: (4.9)

The x; valuesof the coplanar points shovn in Fig. 4.6 are transferedto the X 0 { seeFig.
4.10{ and the construction in Fig. 4.7 is repeated providing the secondpoint

3= 0, =0, =@Bc+ G+ 2C3; Co; CL+ G+ C3): (4.10)

1

showvn Fig. 4.11. Thesetwo points represem the plane sincefrom their coordinates the
coe cients of eq. (4.6). Geometrically we have determinedthe plane by the two lines

Y
A
(d1; mdy|+ b)
""""" T, (dp; mdy + )
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (di; md; + b)
<_d1—> ............................... ( dN,mdN + b)
b | T
d P
| —
> X
dn——f
X1 X2 Xi XN

Figure 4.5: Points in RN represeted by lines.
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; 0 shavn in Fig. 4.12. A planein R® canbe speci ed in terms of any two intersecting
lines it cortains. The reasonfor choosingthe linesin the spis that in k-coords sud lines
are represeted by one rather than two points and there are further advantages. Note that

230 123= (3¢1;0,0): (4.11)

The four Indexed Points

The X, and X3 axesare ea translated to positions X2 and XJ 3 units to the right
providing the third

Y0l 2Xp+ Xp+ X3=0; (4.12)

and similarly the fourth sp $o00. TWO new points are constructedand shavn in Fig. 4.13
As for the previous 2 points

310 2310 = (3¢ 0;0) (4.13)
310 100030 = (3€3;0;0) :
It is easiycheded that the translations correspnd to 12C rotations of the sp $ about the

line u on the points (0; 0; 0); (1; 1; 1) with 10050 coincidingwith 7. To simplify notation the
index permutation is unimportant sothat 5310 = 10p3.

Figure 4.6: On the rst 3 axesa set of polygonal lines represeting a randomly sampledset
of points on a plane R3.
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Figure 4.7: Coplanarity! In k-coordsjoining the pairs of points represeting lineson a plane
forms a pencil of lines on a point. The point shavn is 153 in eqg. (4.8). Review also the
3-point-collinearity for multidimensional lines (previous chapter).

Rotation of a Plane about a Line and the Dual Translation

Hyp erplanes and p-ats in RN

Theorem A p-at in RN givenby eq. (??) is represeted by the (N p)p points :
Xt Xt
N0 10 = ( dikcik; Cos Cik); (4-14)
k=1 k=1
wherei = 1;:::;N p, dx are the distancesspeci ed by the standard axesspacingSjo...jo
after the translation of the X; to the X?axesand i®= 1%:::p°.

Collinearit y Prop erty
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/
- d(1)=3 -

- X
Xl Xz X3 Xf

Figure 4.8: The axesspacingfor the secondsuper-plane 3.

y
A
- dg =3 -
- — d3 = —_—
= X
- d2 = 1—>
X1 X2 X3 x9

Figure 4.9: The axesspacingfor the secondsuper-plane 3.
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C1
s 0
-,_€810 X
TE——d
............................ c?
X 0
X1 X2 X3 1

Figure 4.10: Transferring the valuesfrom the X, to the X jo-axis.

Figure 4.11: The plane represeted by two points
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X1

Figure 4.12: The intersectionsof a plane with the two super-planes °; and 3, are two
lines* ;9 which specify the plane and provide its represemation. This is the equivalert of
the previous gure but in cartesiancoordinates.

Figure 4.13: The plane intersectedwith four super-planes. Each point represets one of
the intersectionlines.
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@ 12 230 108 %
Gt Gt C3

w

X1 X X3 X 10 X 20 X0

Figure 4.14: The distancesbetween adjacent points are proportional to the coe cien ts of
. C1X1+ C&Xo+ C3X3 = Cp. The proportionality constarnt is the dimensionalily of the space.
The plane'sequation can be read from the picture!

Figure 4.15: Rotation of a 2- at (plane) about a 1- at(line) in R® correspndsto atranslation
of the points with 3 indiceson the horizortal line H alongthe linesL ; L%; L%; L%qoining
the points with 2 indices.
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Figure 4.16: Rotation of a plane 2 about a line ! sud that ¢, remainsconstart.
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....... = / \_\ 23 ‘\\‘
N /’f N\ \\
’ 120 ™ f‘f \.\\_ \\
..... |/ N x\
N"’»._ ‘\\
e Y
=% X
TR
34
X1 X, X3 Xq
Figure 4.17: Recursive Construction in R* { 1st step. A pair of points (polygonal lines)
determinesa line (1- at) %t represeted by the 3 constructed points %il 1, 1=1,2,34.
LY
12
-\
2 L
ol e Ba
11 N \\\
12 . 5
NN . 234 %i
1 P e
2 N X
11m N
34 |
X1 X2 X3 X4

Figure 4.18: Recursive Construction in RY 2nd step. The 1-at % and another !z,
represeted by the 3 black points, determine a 2- at (plane) 2 represeted by the two

points 2., 5i,. Thesepoints are the intersectionsof the two polygonal lines joining the
points obtained from the previousstep represeting 1- ats.
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123 oL
- G"\\" 23
1 d
12 -
— . )
; T 34
1, |3
23 = )
1" e
: > o Qe
2 34 B P 31 7
123 |- S 1=
e ———""
X 1 X 2 X 5 X ,

Figure 4.19: Recursive Construction in R* { 3rd step. Two 2-ats, 2% constructed above
and another 2% represeted by the 2 black points, determinea 3-at 3. Pairs of points
represeting the same2- at are joined and their intersectionis the point 35,,. This is one
of the 3 points represeting the 3- at. The \debris" from the previousconstructions, points
with fewer than 4 indices, can be discarded.

y
p P -\\ \\
P d \*\ ,/[, \\\\
- / kY
\\\\\\\ e \bf 1 \
\\\\\\\ ﬂi/ \\ 23 \E\ , /
G / NN 7
’ 12 ™ / AN \ S
h ”M“\, \\\ / // 4
", \ Vi X
.\ £
1, N[
N0
31
R 1234
1y
B
X1 Xs T X3 X4 X

Figure 4.20: Recursive Construction in 4-D { 4th step. A new axis X o is placed one unit
to the right of X3 and the x; valuesare transferedto it from the X, axis. Points are now
represeted by new polygonallines betweenthe X, and X ;0 axesand one of the points ﬁo,

represeting the 1-at 1t onthe newtriple of k-coords axes,is constructedasin 1st step.
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Figure 4.21: Polygonallines on the X ::: X¢ axesrepreseting randomly selectedpoints on
ab-at ° R°®.

Figure 4.22: The 1,; 5, portions of the 1-ats 5 constructed from the polygonallines
showvn in Fig. 4.21,no evidert pattern.
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R emarlkably, the collinearity construction property canbe extendedto higher dimensions
enabling the recursive (on the dimensionality) construction of the represemation of p- ats
for2 p N 1. To adiewe this someintermediate stepsare needed.In the ensuing,we

positions X 10;:::; Xjo. Hered; = N + i 1 and for easyreferencethe partially translated
standard axesspacingis denotedby Sio..jo.
The underpining of the construction algorithm for the point represemation of a 2- at

2R3, aswe saw, is the collinearity property. Namely for any * 2 the points
L, L, 35 arecollinear with 1,3, The generalizationfor p- ats is also true. Without
ertering into the technical details yet for  21; (P 2> (P RN letL,;andL, be

the lines determinedby the correspnding two points

L . (p 2), . (P 2), ‘L . (p 2), . (P 2, .
1 123:(p 1) 23(p 1p ' -2 123:(p 1) 23(p Lp °

Then
Bam =L\ Ly:

This is the basic recursive construction implied in the Representation Mapping stated
formally belon. Though the notation looks cumbersomethe ideais not and to clarify it we
illustrate it for N = 4;p= 3in Figs. 4.17through 4.20. Starting with the polygonallineson
a3-at %, rst the points 1,;; 55 34 represeting 1-ats (lines)on 3, are constructed
and joined to form polygonallines having 3 vertices (the points) joined by two lines. From
the intersection of these new polygonal lines the points szs; ; §j34, represeting 2- ats on

3, are constructed. At any stage a point represeting ", where the superscript is the

at's dimension,is obtained by any pair of linesjoining points represeting a at " ! where
r 1 r

Figure4.23: The 2.; 2, portions of the 2- ats ® constructedfrom the polygonallines

A L. 14 . 1
joning 155 235 3s
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Figure 4.24: The 3., ; 3, of the 3-ats 5 constructed from the polygonal lines
joining %.; 3.,: 3. Nothing yet ... but wait!

Figure 4.25: Thisisitl The f,as; 456 Ofthe 4-ats  ° constructedfrom the polygonal
linesjoining 3.,; 3u.s; 356 This shaws that the original points whoserepresetation is
in Fig. 4.21areon a 5-at in R®. The remaining points of the represetation are obtained
in the sameway.
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Figure 4.26: The full represemation of °. The coe cients of its equation are still the
distancesbetweensequetially indexedpoints asin Fig. 4.14for R3.

Detecting Near Coplanarit y
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Chapter 5

Curv es

5.1 Point-Curv es and Line-Curv es
R ecall the fundamertal duality in the plane point-to-line correspndence:

P :(piip2ps) ! Pif(pr p2);dps; dpi]; (5.1)

where the distance betweenthe x; and x, axesis d, and as usual, the triples within [ ... ]
and within ( ... ) denoteline and point homogeneousoordinates respectively. For regular
(i.e. in the Euclidean plane) points

P:(p;p21) ! P:[(pr p2);d; dpl:

The secondhalf of the duality is the line-to-point correspndence:

Tilaagaz] Vi (dap; agiag + ap); (5.2)
wherethe g ; i = 1;2 arethe coe cien ts of the x; in the equationof * and a; is the constan.
When a; 6 0, the slope of “ ism = & and the intercept b= 22 so:

2 az
Tom; Lt T i(dib;l m): (5.3)

A way to obtain (5.2) from (5.1) is to nd the envelog of all the lines P which are the
imagesof the points P 2 ~. Applied to ead point of a smooth point-curve c resultsin the
line-curve ¢ shown in Fig. 5.1.

point curve $ line curve:

Point-Curv es from Point-Curv es

Early in the dewelopmen (1980) of k-coords the direct construction of the a curve's image
asa point curv e was accomplishedas outlined belon. Among bene ts this when applied
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judiciously avoids over-plotting by the plethora of the lines which are the tangerts at the
non-convexportions of the image curve.
Considera generalplanar curve c given by :

c: F(Xy;%X) =0 (5.4)
Substituting in eq. (5.3) yields the point-coordinates
@ =@ Lo (@@L X E@2).

X (5.5)

T (@it F=@) W (@@t F=@)
There is an important special casewhen the original point-curve is given explicitly by x, =
g(X1). Then eq. (5.5) reducesto :

1 O Xo+ x10qx1)

S A R AR A (56)

Conic Transforms

T he treatment is particularly pleasingfor the conic sectionswhich are descrited by the
guadratic function

F (X1;X2) A1x1? + 2A4X1Xo + Azxzzf 8A5X1]‘_" 2AeXz + Az =

0
A1 As As X1
= (xux21)@A, A, AgA@x, A; (5.7)
As Ag Az 1
where the type of conic is determined by the sign of the discriminant = (A2 AiA)).

The coe cient matrix is denotedby A and its determinart, which plays an important role

Figure 5.1: Point-curv e and their line-curv e images.
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C t\.\
\
Fa\
X4 X 5

Figure 5.2: Cusp$ In ection point duality is independen of the curves' oriertation.

y X2

/Po / C:F(Xy;x2) =0

Po = (X2;X3)

Lc:f(x;y)=0

X1 X2

Figure 5.3: Obtaining the point-curve c directly from the point-curve c.

in the dewelopmer, is
detA = A3(A1A, A2 A1As%  AAS% + 2A4AsA - (5.8)

For conics, using the idertity that for a polynomial F of degreen F(x) = 0) r F X
r F x nF with the secondexpressionbeing linear, eq. (5.5) and becomes

AsX1+ Asxo + Ag

X =
[(Ar+ AgXe+ (Az+ Ag)Xa + (As + Ag)]
(5.9)
y = AsXy + AeXa + Az ,
[(Ar+ Ag)Xs+ (Az+ AgXa+ (As+ Ag)l
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Theseare Mobius' transformations which form a group (seeany good book in modern Al-
gebra) [1]). This obsenation enablessubstartial simpli cations of the earlier treatment of
conicsand their transforms (see[4] and [5]). The inverse expressingx; and X, in terms of
x and vy, is a Mobius transformation of the form

a; X + apy + ags X + axpyt+ azxg
‘= y %, = y : (5.10)
az1 X + azy + ass Az X + azgpy + ass

The result obtained is
0 1

X
f(x;y)= (xyla@yA=0: (5.11)
1

The conclusionthen is that
conicsin thexy plane 7! conicsin the x;x, plane

The speci ¢ result obtained is

0 1
X

f(x:y)=(xyla@y A =0; (5.12)
1

with ais a 3x3 matrix whoseelemens are givenin terms of the coe cien ts in eq. 5.7 enabling
the classi cation of the conic transformsinto six cases.

Classi cation of the Conic Transforms

1Also called linear rational transformations.
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Figure 5.4: Ellipses always map into hyperbolas. Each assymptoteis the image of a point
wherethe tangert hasslope 1.

Figure 5.5: A parabola whoseideal point does not have direction with slope 1 always
transformsto a hyperbola with a vertical assymptote. The other assymptoteis the image of
the point wherethe parabola hastangert with slope 1.
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Figure 5.6: A parabola whoseideal point hasdirection with slope 1 transformsto a parabola
- self-dual.

Figure 5.7: Hyperbola to ellipse{ dual of caseshown in Fig. 5.4
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Figure 5.8: Hyperbola to parabola. This occurswhen one of the assymptoteshas slope 1 {
dual of caseshown in Fig. 5.5

Figure 5.9: Hyperbola to hyperpola { self-dualcase.
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Transforms of Algebraic Curv es

Conic transforms are studied for two reasons.For one, it is the easeof use of Mobius trans-
formations which is completely generalfor Quadrics the surfacesprescribed by quadratic
equations,in any dimension For another they are a model for the far more generalcurves,
regionsand their rami cations in the next section. A few words are in order on the trans-
forms of algebraiccurvesin general. In Algebraic Geometry the topic of duals of algebaic
curveshasbeenstudied extensively and solved explicitly over a certury agoby Julius Plucker
with the conclusionsapplying alsoin our casewhich is a speci ¢ kind of duality. The results
have beencodi ed and are known as the Plucker formulae apply to algebraic curves with
restricted kinds of singular points. Speci cally, the Plucker classformula says that for a
curve c of degreen; n 2 with s cuspsand d (double)crossing-pints the image c is also
an algebraiccurve of degreen = n(n 1) 2d 3s (see[3], [6], [14] and [7] for the more
generalalgebraicmethods).

Unlessthe curve is given explicitly, and its transform is easily obtained via eq. (5.6),
there is no sensiblereasonto work with the image of algebraic curves in k-coords. The
price in nding the polynomial equation of raised degreeand then computing the curve is
too steepwith no benet. The samecurve can be computed numerically and directly from
eq. 5.5. Alternativ ely one can work with approximations asis doneroutinely in Geometric
Modeling and other applications. The image of portions algebraic curve and more general
curvescan be understood qualitatively well with the help of the following considerations.

Figure 5.10: Gconics- three types of sections: (left) bounded convex set ke, (right) un-
boundedconvex set uc and (middle) hyperbola-like gh regions.
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Figure 5.11: A bounded corvex set bc always transformsto a gh (generalizedhyperbola) {
this is the generalizationof the caseshavn in Fig. 5.4.

Figure 5.12: An unboundedcorvex set uc whoseideal points do not have slope 1 transforms
to a gh (generalizedhyperbola). This is the generalizationof the caseshowvn in Fig. 5.5.

Convex Sets and their Relativ es

Considera double-cone,as shovn in Fig. 5.10, whosebaseis a bounded corvex set rather
than a circle. The three type of sectionsshonvn are generalizationsof the conicsand are
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Figure 5.13: Unbounded convex set uc having ideal point with slope 1 transformsto a uc {
self-dualcase.This is the generalizationof the caseshown in Fig. 5.6.
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Figure 5.14: A ghwhosesupporting lines have slope m 2 [my; m,] wherethe m; < 1< m,
are the assymptotes'slopestransformsto a boundedconvex bc set. This is the generalization
of the conic caseshown in Fig. 5.7.

cornveniertly called gonics’. They are either a :

bounded convex setis abbreviatedby bc, or an

unbounded convex setis denotedby uc cortaining a non-emply set of ideal points whose
slope m is in aninterval m 2 [m; ; m;], or a

2The corresponding regions have been previously referred to as estars, pstars and hstars [9], [12].
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wherethe m; are the assymptotes'slopes,transforms

to a gh{ Self-dualcase.This is the generalizationof the caseshown in Fig. 5.9.

-
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Figure 5.15: A ghwith 16Zm; ; m,],

) of hcs correspnds to the

upwvard chain ¢, above both assymp-

totes, and another corvex-dovnward chain ¢ belov both assymptotes.
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generalized hyperbola denoted by gh consisting of two full(not segmets) lines
called assymptotestwo in nite chains, corvex-

Figure 5.16: The Cornvex Union (also called \Convex Merge

Outer Union of their images(ghs).



Figure 5.17: Inner intersection and intersectionsare dual.
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Chapter 6

Appro ximate Planes & Flats

Motiv ation and a Topology for Proximit y

| n order to apply the results of the represetation of ats their behavior in the presenceof
errors needsto be understood. While there are many sourcesof errors in the applications,

Figure 6.1: Pair of point clustersrepreseting closeplanes. Note the hexagonalpatterns.

from our viewpoint, it su ces to considerthe accunulated errors in terms of the resulting
variations ¢ 2 [g ;¢ ] in the coe cients ¢ of the linear equations. This generatesa whole
family F of \close" ats. Evenin R? the direct visualization of sud a family of closeplanes
is challenging. Let us examinethe family of \close" planes

froxi+oXoteXs=G;G2[G:¢]:6 <gg:
Computing the two point represetation in k-coords of someof these planeswe seein Fig.
6.1 the correspnding pair of point clusters. The outline of two polygonal patterns can be

discerned. Not only is the family of planes\visualizable" but alsothe variations in se\eral
directions.
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Figure 6.2: On the left is aregioncoveredby lines\close" to = and on the right arethe points
in k-coords represeting the linesin the region. This is an instanceof a gh (a \generalized
hyperbola™) onthe left I bc which hereis a boundedcorvex quadrilateral.

Pro ximit y of Lines and Line Neigh borho ods

In R? considerthe collection of lines
F=1f] :caXi+cx,=1;¢;¢2Rg;:
and the neighborhood
NL=f"j  :axi+cx2=1; c2[g;c] i=12g (6.1)
The extremelines obtained by the 4 di erent combinations are :

8

5 (; )igxg+tox=1
(1) gxit+tGx=1

2 (v )Xt xe=1

() Xt X =1

(6.2)

An exampleis shavn on the left part of Fig. 6.2 wherethe extremelinesin eq. (6.2) are
constructedfrom the points:

1 1 1 1
P/ = —/0 ; P = —;0 ; Py= 0= P, = 0 —
Ct Ct G G

Cheding the situation in jj-coords, on the right-part of Fig. 6.2, the linesin the unbounded
region Ry are transformedinto a simple convexquadrilateral N L.
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A
NLs
NLy
—Ll \\\‘\//,
L2
X1 Xz
Figure 6.3: The regionsR;; i = 1;2;3;4 covered by 4 families of lines in orthogonal and

their imagesNL; in jj coordinates.

We enlargethe classof linesin NL replacingthe 1 by ¢y and allowing it to vary within
an interval

NL=f"j :cxi+CX2=6G; G2[g;c] i=012¢: (6.3)

Ead sud line ° is represeted by the point

N C Co
= ; 6.4
( PSSRl C2) (6.4)

The resulting NL is now a hexagon with the left-most and right-
most  edges vertical. The  vertices going courter-clockwise are
(G D M G D M D I G 5 I (R B QI ) P For clarity the three
quadrilaterals correspnding to ¢,;c; and ¢ 2 [c, ;¢ ] are also showvn separatelyin the
upper portion of Fig. ?? with fewer details.

The generalizationto RN is direct with a family of closelines beingrepreseted by N 1
regions and comesout as a special casein what follows. For earlier treatments of line-
neighborhoods and topologiesfor ats in jj-coords see[10] and [2]. The exposition hereis
adapted from [13].
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Pro ximit y of Hyp erplanes

Form ulation of the Problem in RN

| n R® for the plane
P C1X1+ CX2 + C3X3 = Cp

C+ 2c3+ 3cp Co C3+ 2¢; Co

, = (1;0) + ,
CLt+ C+ C3 CL+ C+ C3 ( ) Ci+C+CG C+C+C3

1023 =

an obsenation shaving that 0= 103 can be obtained from

C+ 2c3 | Co
CL+C+ C3 ’C1+ C+ C3

0= 123—
by a shift and the cournter-clockwise cyclic permutation ¢; ! ¢ ; ! ¢ ; ¢!

AY
for ¢ 2 [cy;c3]

)1 | ( 5+ ) X5

(6.5)

(6.6)

C:. This

Figure 6.4: Construction of the neighborhood NL for NL = ™ j 1 ciX1 + GXo = Co ;G 2

[c ;¢'] i = 0129 The \exploded" view also shows the quadrilaterals NL

for ¢g =

¢ and NL, and ¢y = ¢; whosevertices are marked with black and blank oval vertices
respectively. The completeNL is a hexagonhaving two vertical edges,3 verticesfrom N L

{ the lowest ones,and three verticesfrom NL. .
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conbinatorial relation allows for a reduction in the number of indexed points that needto
be considered.The analogousrelations hold for RN.
We proceednow with the study of the the classof all hyperplanes

F=f ] cXgtcoxa+ii+oyXn=1;¢6 2Rfor i=1;2:;Ng;

Note that for corveniencethe valueof ¢y = 1is usedandis adjustedlater to arbitrary values
asfor line neighborhoods. In the study of the N 1 regionscomposingNH, in view of the
previousreduction, it su ces to investigatethe region = NH y cortaining the points .
Theseare the function valuesof

fy RV 7! R?
L . =) !
in X;y coordinates, jN=1 (i Lg 1

fn(e) = (x(c) 5 y(e) = S s

(6.7)

reverting to homogeneousoordinates to accomalate ideal points. The subscript \0% is
dropped whenthe cortext is clear. The ¢; rangein the N-dimensional\b ox"

B=1[c;c] = [og:c] RY:

The stageis now set for the task ahead: to understandthe propertiesof f v, its action on B

B7'  =fy(B) P? ,

and the structure of represeting the family of hyperplanesin N .

The regionin RN coveredby \close" hyperplanesis a complexN -dimensionalgh\gener-
alized hyperbola") whoseimagein k-coords consistsof N 1 regionsin R?. As will be seen
theseare also bc, uc, gh From theseregionsthe properties of \close" hyperplanescan be
ascertainedand visualizedwithout lossof information.

The Region
Comp onents and Structure of

Lemma 6.0.1 =\[, . Either
(@) is a convexsetstrictly alove or belowthe x-axis, or
(b) consistsof two convexregions one alove and the other below the x-axis.

In the secondcase,it will be seen,that there exists a conbination of the ¢; for which
S(c) = O resulting in  being a gh For the construction of  we pick our cue from Fig.

?? and investigate the intersectionsPX \ PX** and PS5 \ PY™ starting with the relations
betweenthe successig C¥, and Cf, it turns out : that for

A= (GGG 156G TG S A1=(cl;:::;cN)fBN5 (6.8)

63



(
ci V= ck+ S(A) ;

Ci V= Cly + S(By):

These2N verticesare characterizedby a single changeof signin the superscriptsat the kth
position. The successi line intersectionsPX \ P¥ 1 are

(6.9)

1

k = (k1)+k 2 =
Chy+(k D=Cl Yyr(k 2 ) y= g

(6.10)

and
Pi\ Py =f(A)=f(Bn) ; Ph\ Py =f(By)="f(Ay): (6.11)

If there is a conbination of the coe cients ¢ sud that S(c) = ¢c;+ ¢+ :::+ ¢y = 0,
while thesecc 2 [c ;¢ ], then y(Ax) and y(Ax+1) have dierent signsso that the above
monotonicities become

Construction of

We have beencarefully skirting around the prospect of the sumS(c) = jNﬂch = 0 for some
c 2 B and this is dealt with now. In the c 2 RN the coe cient space . : szl ¢ =0isa

TR
X1 X 1 X 2 X 3
Figure 6.5: A plane , its intersection” = 1,3 with the rst super-plane § and the points

Pk=" "\ xix;-planefor k 6 i; |
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Figure 6.6: \F an" regions , swept by the rotations of P¥ about the point (k 1;0).

hyperplaneand its relative position to the box B hasimportant rami cations with respect
to the correspnding . Sofor the determination of the procedureisto rst ched

Theorem 6.0.2 The region is 2N-agonaloveor below (but not intersecting) the x-axis,
which is

1. bcif ;\ B=;,
2. ucif A\ B=fAgor .\ B=1Bg,

3. ghif . intersects B at more than one edge,and hasa vertical assympte if in addition
¢ contains a vertexof B.
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fn (Al)_%;'*.__u

,;,.va@;),_.;__

fa(A2)+ N
fN(AS)’
(A . -,,__.ifif»»N,_(B 1)
AN fuol,
N RO
S fn(Aka) . o
Coe - S

Figure 6.7: Construction of . The kth region  cortributes the verticesfy (Ax);fn (Bk)
to @ and together with the region ., the vertices fy (Ax+1);fn(Bk+1) and edges
fn(ax); (k) ashighlighted.

Bs=( +) Ba=( ;+;+)
: V)
C3 : by
. \ B1= (+;+:4)
C b3’i
C1 !I &
x'x‘;lAl_( )
P ay
Ax=(+; ;) Az= (+;+; )

Figure 6.8: 3D-Box B in the spaceof coe cients showving the vertices and edges3 eah
Ay; By; ag; b alongthe path P. The notation  indicatesthe signofc, at the kth componernt.
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Jo.

1y,
Yy, + 1w
1y,
e

e -

1

&
"
Yy,
1,
i,

Ci Cs C, Cv1 Ck Ck+1 Cv 1 Cu

Figure 6.9: Image B of domain B, which is an N-dimensionalbox in the coe cient space
cC C ::: cy. The dotted lines are the polygonallines represeting the box's vertices.
The solid line shaws vertex Ax and the dashedportion (together with the remaining solid
line) showvs one of the points on the edgeay the arrow on the Cy axis is the direction of
traversalfrom ¢, ! ¢, . Ead full traversalof ¢« 2 [c, ;c] correspndsto an edgeay, one
of the N edgeson the vertex Ax. The full path P can be traced in this manner.

Bgz(l, ,+) BZZ( ,+,+)
b, 1Bz (i)
E ¢ az

Az=(+; ;) Az= (+;+; )
Figure 6.10: The B in the 3-D spaceof coe cien ts ¢; ¢; ¢z and its positionswith respect to

theplane :c;+c,+c3=0. Namely .\ B=;,orif \ B 6 ; .isasupporting plane
at either vertex A; or By or . intersectstwo edgesof the path P.
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N(AN 2)

fn(An 1)

Figure 6.11: canbeauc. Herefy (B,) is an ideal point.

Figure 6.12: canbeagh
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Figure 6.13: The intersection of the hyperplane . with the path P B determinesthe
type of the region . When .\ B = ; (top) isahc (boundedcorvex) 2N-agonasin Fig.
6.7, otherwisea uc (unbounded corvex) when . is a supporting hyperplaneto B at either
vertex A; or B; (middle) Fig. 6.11, or asin the bottom part a gh (generalizedhyperbola)
Fig. 6.12when . intersectsmore than onesegmeh B. In addition, if . cuts through one
of the verticesV then V is an ideal point and is a vertical assymptoteof . (Exercise??).

Ax=(+; ) Az= (+;+; )
C2
C1 C3
Ar=(; ;) Bi=(+;+;%)
C3 C1
Co o
B3:( ’ !+) BZZ( Tt +)

Figure 6.14: Pathway for the computation of @ for N = 3. The label ¢ indicates the
only cocient varrying along the edge. Starting from A; = ( ; ; ) the next vertex
A, = (+; ; ) isfound by the variation of c; betweenits extremevalues. In the sameway

all the remaining verticesare found.
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0:8 —

0:6 —

0:4 _|

0.2 _|

Figure 6.15: The hexagonalregions = NHy (on the left) and on the right NH 1o for the
family of planeswith ¢; 2 [1=3;1.5]; ¢, 2 [1=3; 2:5]; c3 2 [1=3; 1]. Comparethis picture with
Fig. 6.1 at the beginning of the chapter.
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0:8 |

0:6 —

0:4 _|

0.2 |

Figure 6.16: The four hexagonalregionsfor the family of planeswith ¢, 2 [1=3;1.5];¢, 2
[1=3; 2:5]; c3 2 [1=3; 1]. Note that the last regionN H w is idertical to the rst N H  translated
3 units to the right. Note the overlap in the last two regionswhich suggestghat there may
be planes in this family with ¢z = 0 (when x = z) which is not possiblefrom the
o intervals' de nition. However, there can not be points , = 3 2 NHx\ NHag with

©2 NHpand 102 NH . For example,the two  with vertical arrows are the locations
of @; zin NHgpandNHaz for ( ;+; ) whilethe with horizortal arrow is the location

of (+; ; )in NHo.

0:8

Figure 6.17: The hexagonalregions = NHy (on the left) and on the right NH o for
the family of planeswith ¢, 2 [:85 1:15} ¢; 2 [1=3;1:5];c, 2 [1=3;2:5];¢c3 2 [1=3;1]. The
supersciptof ¢y isthe rst entry ofthe quadruples( ;:;:;:;) designatingthe vertices. Vertices

with ¢ are marked by  and thosefor c, with ellipses.

71



72



X2

A
D:0, 1) _C:(1,1)

(a)

1

X » X
A:(0,0) B:(1,0)
X2

E:(1,0,0
indicated by m = =

| &) [E:1,0,0

N\

X1 X X3

indicated by = = =

Y
T F:(0,0,0,1,0)
1

Figure 7.1: (a) Square(b) Cubein R® (c) Hypercube in R® { all edgeshave unit length

Chapter 7
Surfaces in RN

TCiX1+ CXo+ CG3X3 = Cp - (7.1)

Denoting the coe cients by ¢ = (c;;¢;¢3) and u = (1;1;1), the points represeting the
plane are givenin the corvenient inner-product (denotedby \ ") form :

=(c dy;co;cu)=(c dy;Co; G+ C+Cy): (7.2)
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Speci cally, the rst coordinatesof for the index spacingsdue to the four standard axes

triples usedare: 8
3¢ d°=c (0;1,2) = ¢+ 2¢
c di=c (3;1,2) = 3¢+ + 2c3 (7.3)
3 ¢ d?=c (3;42) = 3¢+ 4+ 2c3 '
"¢ d®=c (3;4,5 = 3c,+ 40, + 5c3

The gradiert vector of F, r F = (%; %;%) » » at the point P is normal to the
surface at P ) the tangert plane of at the point Po(to;s0) = (X9 ;x9;x3) = (x°)
is given by

(ssH):rF (x x%)= X (Xi X?)Q(X?;Xg;xg) = 0:
, i
The points represeting (s;t), obtained from eq. (7.2) are :
osi)=(rF d;rF (xX:rF u); i=01L (7.4)
Stated explicitly the point 7! pair-of-points mapping is
X2 7 T (oo 10 = (12s; 1%28) = (6 Y); (XY)) (7.5)

whereby x° we denotethe x-coordinate of 103 the y beingthe samefor both points. With

y

Figure 7.2: A surface 2 E is represeted by two planar regions 1,3 ; 2310 consisting of
pairs of points represeting its tangert planes.

74



123

\ 123 | 12 123

123 \ 123

Figure 7.3: Formation of boundary cortour

the notation F; = @F=@,;
Fo+2F3

8 — .
% X = Fi+Fo+F3 ?

— X1F1+XxoFo+x3F3 .
y - Fi1+F2+F3 ! (76)

x0= 3F1+Fa+2Fs .
Fi+F2+F3
Thesetransformations are the direct extensionof the 2-D point $ point curve transforma-
tions derived in Chapter ??. A word of caution, when the inter-axesdistanced 6 1, the
right-hand-sidesof x and x° above needto be multiplied by d and 2d respectively (see(5.5)
in Chapter ??).

The generalizationto the hyper-surfacesE of RN is direct. The image of the tangert
hyperplaneat a point P 2 2 E consistsof N 1 points determined from eq. (7.4) by
using the appropriate axesspacingdy, ;i = 0;:::;N 2. The resulting transformation, the
N-D extensionof eq. (7.6) with N termsin the numerator and denominator, determinesthe
point N  1-tuplesmappingsurface 2 Einto consistingof (N 1) planar regions

7.1 Boundary Contours

Lemma 7.1.1 (Boundaryof in RN) Fora RN, @ is composal of N 1 curveswhich
are the imagesof the intersections of  with the rst N 1 sugerplanes.

An algebraic surface is one descriked by a polynomial equation providing an important
special caseof Lemma7.1.1.
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Corollary 7.1.2 (Boundary of an algebaic surface) The boundary of an algebaic surface
of degree n is composal of N 1 algebaric curveseach of degree n(n 1) or less.

The correspnding known result in Algebraic Geometry is that the dual of a non-singular
algebraicsurfaceof degreen hasdegreen(n 1)N 1V [?], [?]. Herethe boundary represen-
tations canbe found with the aid of Plucker'sresults presetted in Section?? in Chapter ??.
For F in eq. (7.6) a quadratic polynomial the correspnding surfaceis called quadric and in
RS

P F(X15X2; X3) = (X15 X2 X3; DA (X1; X2; X3; 1) (7.7)

A beinga symmetric4 4 matrix for R®and (N + 1) (N + 1) for RN,

Corollary 7.1.3 (Boundary of for a quadric) A quadric surface RN is representel
by N 1 planar regions with conic boundaries.

This is the direct extensionfrom conicsin 2-D to quadricsin N-D and as for conicstheir
type dependson their orientation as pointed out next.

Theorem 7.1.4 (Representationof in RN) A smaoth hypersurface RN can be repre-
sente byN 1regions .1 P?;i=1::5;N 1with @+ = Cio 0= (\ i“(!s)(io 1o

Figure 7.4: Intersectionof a surface (here a hyperboloid of one sheet)with the two super-
planes &; . The points of the boundary @ are the imagesof the tangert planesat the
points of two curves \ SHand \ .
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To clarify the notation, [}° is the i + 1 sp (recall that the rst oneis also denoted by
NS ). The image of the space curve [\ s the image of only one projection; we
chose( {85\ )0 1)i0 correspnding to the adjacen axesXio 1; Xjo for which d = 1 with
the corvertion that for i°= 1; X0 1y = Xn. A horizortal translation by N + i 1 units to
the left asshown in Fig. ?? is neededto obtain the correct x coordinate. For an object, a
point P for example,the notation Pjo refersto the represetation of P with respect to the
N coordinates axesatfter the ith shift.
For R® the preferred projections are ( §\ )12 ;( %\ )iz and for R4, ( *\ )io
( fg\ )104 ; ( fg\ )10 @and soon.

7.2 Developable Surfaces

T he spherecan not be cut and then attened undistorted. Motivated by map-making, sur-
facesweresough whoseshapeis\close" to sphericaland canbe unrolled into a planewithout
streching or cortracting. Euler rst consideredthis problem, then starting in 1771 Monge
made major cortributions on the subject of developblesurfaces.Monge pointed out poten-
tial applicationsespecially to architecture leading perhapsto someof the modern cortoured
architectural marvels. Gaussand others followed with the dewelopmen of the di erential
geometryof more genenalsurfaces.Dewelopablesurfaces(\developables”for short), are the
classD E which arethe envelope of a oneparameterfamily of planes,sene asan excellet
starting point for our study of surfacerepresetation. Finding their image, matching and
reconstruction algorithms is straight-forward and the results o er crucial guideson coping
with the more generalrepresetation problems. The pioneeringwork, and the basisfor the
exposition here, on their represetation and that of ruled surfacesis due to C.K.Hung [8],
[11].

Theorem 7.2.1 (C.K.Hung { DevelombleSurfaes){ Leta surface 2 D with tangent
planesgivenby eg. (??), and a neighlorhood U |, R whele the two conditions :

dxt) _ @ c(t) d _ . dyt) . @ o)

dt @ cu o d @ o u

(7.8)

are not simultaneouslysatis ed for 8t 2 U. Thenthe setof pointsf (t);ojt 2 Ug representing
the tangent planeseq. (??) are curves.

Theorem 7.2.2 A developble with a well matchel representation is (piecewise) recon-
structable.

7.2.1 Classes of Developables

Corollary 7.2.3 (C.K.Hung { Cylinders) Elliptic cylindersin R® are represente by a pair
of hypertolas.

77



Figure 7.5: The pair of points 1,3 ; 2310 represets an unambiguousplane. The and
points are al ambiguousin the rst sense.

,,,,,,,,,,,,,,,,,,,,,,

Figure 7.6: Reconstructinga dewelopable. The ruling r is represeted by r,3 = P\ Q showvn
bya ,andri;= P\ Qepshavnbya ,whereQe isthe 1;2 part of the represetation
of Q with respect to the coordinate axesX; X»; Xs.

There are advantagesin describingsurfacesin vector notation which is due to the math-
ematical physicist W.J. Gibbs. A circular cylinder is given by :

X(t; v) = b + r(8.cost+ &,sint) + v8; (7.9

where?% is the unit vector in the axis direction and two other unit vectors sud that s =
%, %, which are implicitly givenin terms of the basicunit vectors®; ;i = 1;2;3. The two
parametersv;t arereal numberswith O t 2 . The constart vector b and the cylinder's

1He was an early advocate for visualization in sciencewith his rst two papers in 1873: \Graphical
Methods in the Thermodynamics of Fluids" and \A Method of Geometrical Represettation of the Thermo-
dynamics Properties of Substancesby Means of Surfaces".
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axis of symmetry s sharea point which is the certer of a circle of radius r and a point on
its circumferenceis given by the vector p = r(%;cost+ 4,sint). This vector is normal to the
tangert plane

In Fig. 7.9 a generalcylinder, with a ruling formed of cuspshastwo represeting curves
eat with anin ection point, remind us of the developble$ curveduality. The represeting
curvesseenn Fig. 7.10indicate that a planetangert to tworulings (i.e. bitangern) existsand
is represeted by crossingpoints one on eat curve further illustrating the aforemenioned
duality. By the way this alsopoints out that the crossingpoint and cuspsin the represeting
curvesin Figs. ?? and ?? correspnd to bitangert planesand rulings which are the loci of
in ection points in the dewelopables.

Cones

A dewlopableall of whoserulings intersect on a single characteristic point, eq. (?7?), is a
cone

Corollary 7.2.4 (Cones{ C.K.Hung ) Circular Conesin R? are representel by a pair of
conic curves.

| Number of tangert planesparallelto u | Represeted by a pair of |
0 ellipses
1 parabolas
2 hyperbolas

Generaldeelopablesurfacescan be descriked by

X(s;v) = y(s) + vg(s);j9(s)j = La< s< b (7.10)

Figure %7_: A pair of hyperbolas represeting the cylinder with orientation (roughly ; =
»=1= 2; 3= 0)shavn onthe left. The arethe \handles" for changingorientation in
the software usedand have no signi cane here.
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Figure 7.8: Two hyperbolas, one coincidert with the X3 axis, represeting the cylinder
showvn on the left.

a nice examplebeing the dewlopablehelicoid

X1 = acCcosSsS avsins ; Xp; = asin s+ avcoss;; X3 = b(s+ v): (7.11)

Figure 7.9: A generalcylinder illustrating the developble$ curve duality with the ruling
formed by cuspstransforming to an in e ction point in ead of the represeting curves.
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Figure 7.10: The two leaves of the surfacein the previous gure are extendedallowing for

a bitangentplane, tangen to two rulings, represetted by a crossingpoint together with the
in ection points in eat of the represeting curves.

7.3 Ruled Surfaces

A famousruled surfaceis the Moebius strip descriked by:
x=y()+vg(); 3<V3; (7.12)
y() = (cos )&+ (sin )& ;
g( )= (sin} cos )&+ (sin3 sin )& + (cosi )e;:

‘9—. —

o AWK

Figure 7.11: A circular conewithout tangert planesparallel to the line u is represeted by
two ellipses. The two points, oneon ead ellipse,represeh one of the tangent planes.
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This is a non-orientablesurfacefor the unit normal of a point changesits senseasthe point
traversesaround the circley = cos €; + sin €, ([?] p. 170). Below are someFigs. of
a traversal on the Moebius strip correspnding to the circle, and its represetation in k-
coords for various orientations. MAJOR THANKS AND ACKNOWLEDGEMENTS TO
CHAO-KUEI HUNG AND DAVID ADJIASHVILI FOR THESE FIGURES

7.4 Conclusions & Future Work

F or the classesof smaoth surfacesstudied the represetation is unique. That is, the surface

can be reconstructedfrom its two represeting planar regions. Recall from the hypercube
examplethat the the generalizationto hyper-surfacesRN is direct and immediate consisting
of N 1 linked regions. ALL surfacescan be immediately recognizedfrom the regions
represeting them. As we pointed out dewelopable surfacescan be non-trivial. This is
also holds for ruled surfacesand quadrics which can be recognizedby the conical regions
represeting them. For another, the prospect of transforming the description and designof
surfacesinto a planar problem without loss of information is exciting. Perhapsmore soin
treating the approximation of surfacesone can equivalertly treat the approximation of the
correspnding planar regions. Earlier [13]it was shavn that families of proximate planesin
R3 are represeted by 2 corvex hexagonswhoseshape and size completely characterizethe
speci ¢ collection of planes. Cornversely this is also a characterization of \nearly" planar
surfaces. Recall the easyrepresetation of geneal dewelopable surfacesby curves rather
than regions. We surmisethat in k-coords thin curved strips represen families of \nearly")
dewelopable surfaces. Similar obsenations can be made about \nearly" quadric surfaces.
Theseremarkstogether revisiting the intutiv e picture of the hypercube Fig. 7 should shows
the power and potential of this represemation.

Figure 7.12: Another conewithout tangernt planesparallel to u is represeted by two ellipses
one collapsingto a line segmen
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Figure 7.13: A circular conewith onetangert plane parallel to the line u is represeted by
two parabolas. The two points, one on ead parabola, represei one of the tangert planes.

We proposenext to dewelop theseideasand bring them to a stagewhere they can be
conveniertly used. This shouldinclude an e cien t algorithm for the construction of interior
points for these surfaces. This is will substartially increasethe variety and scope of the
Models (MS) that can be constructed for ProcessControl and Decision Support and which
was the point of departure for this work. As an illustration an examplebasedon ellipsoids

Figure 7.14: A circular conewith onetangert plane parallel to the line u is represeted by
two parabolas one collapsingto a half-line.
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Figure 7.15: A circular conewith two tangert planesparallel to the line u is represeted by
two hyperbolas. The two points, oneon eat hyperbola, represeh oneof the tangert planes.

Figure 7.16: Circular conewith two tangernt planesparallel to the line u is represeted by
two hyperbolas one of them collapsingto a line.
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Figure 7.17: DevelopableHelicoid and its represetation for the orientation shovn. The two
points on right represem the tangert plane on the right.

Figure 7.18: DevelopableHelicoid and its represetation for the orientation showvn. The two
points on right represem the tangert plane on the right.

is showvn in Fig. 7.25modeling a processprocesswith 20 parameters. A feasiblestate of
the processis any interior point sud as that showvn by the polygonal line. As a result
of the constraints applied one-by-one on the parametersthe available rangesof remaining
parameters decreaseand are showvn by the intermediate curves between the axes. The
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Figure 7.19: The saddle{ a doubly-ruled surface.

very restricted rangesfor X 13; X 14; X 15 shaw that theseare the \critical parameters" for
this state; where the point is \bumping" the boundary. We would like to be able to sut
constructions and interpretations with models of much more complex processesising the
classof surfacesstudied here.
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